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Abstract Graphene nanosheets, synthesized by a modified
Hummers method, have been functionalized by PMo12, and
used as the supports of the PtRu nanoparticles. The
electrocatalytic properties of the resultant nanocatalysts
(PtRu/PMo12-Graphene) for methanol electro-oxidation
have been evaluated by cyclic voltammetry and chronoam-
perometry. The micrograph and the elemental composition
have also been investigated by transmission electron
microscopy and energy dispersive X-ray spectroscopy.
The results suggest that the addition of PMo12 benefits the
high dispersion of graphene nanosheets in the water and
the uniform dispersion of the PtRu nanoparticles on the
graphene nanosheets, and the PtRu/PMo12-Graphene cata-
lysts have higher electrocatalytic activity and better
electrochemical stability for methanol oxidation compared
to the PtRu/Graphene catalysts.
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Introduction

Direct methanol fuel cells (DMFCs), as promising power
sources for portable electrical devices, have attracted more
and more attention in the past decades due to their high
energy-conversion efficiency, low operating temperature, as
well as the simple handling and processing of fuel [1].

However, compared with hydrogen-fed fuel cells, one of
the main challenges, which DMFCs have to face, is the
slow anode dynamics and the poisoning tendency of the
anodic catalysts by some adsorbed intermediates during
the processes of methanol oxidation, such as COads.
Consequently, enormous efforts have been devoted towards
the improvement of the activity and endurance of the
anodic electrocatalysts [2]. For this purpose, lots of
catalysts including Pt, Pt-based alloys, and oxides have
been proposed for the oxidation of methanol. Among them,
bimetallic PtRu catalyst is considered to be the most
promising anodic catalyst for DMFCs [3]. In addition,
supporting materials, which have a large effect on the
particle size and distribution of the supported nanocatalysts,
have also been proven to be essential to the electrocatalysts
to achieve high catalytic activity for methanol electro-
oxidation [4]. It is well known that various carbon
materials, such as Vulcan XC-72R carbon black [5], carbon
nanotubes (CNTs) [6, 7], graphitic carbon nanofibers
(GNFs) [8, 9], carbon nanohorns [10], carbon nanoporous
arrays [11, 12], carbon microbeads [13], and mesoporous
carbons [14] have been used as the catalyst supports in
DMFCs.

Recently, graphene, a single-atom-thick sheet of hexag-
onally arrayed sp2-bonded carbon atoms, has been charac-
terized as “the thinnest material in our universe” [15] and
received tremendous attention in fuel cell application due to
the particular electronic conductivity and extremely high
specific surface area (theoretical specific surface area of
2,630 m2/g) [16]. Unfortunately, it is so difficult to obtain a
truly single sheet of graphene in practice that researchers
have focused their efforts on several or even tens of
graphene nanosheets. Many papers have reported that
graphene nanosheet-supported Pt or Pt–Ru nanoparticles
displayed excellent electrocatalytic activity for methanol
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oxidation [17]. Wang et al. prepared graphene–metal
particle nanocomposites in a water–ethylene glycol system
using graphene oxide as the precursor and metal nano-
particles (Au, Pt, and Pd) as building blocks and investi-
gated the potential application of graphene–Pt composites
in direct methanol fuel cells [18]. Li et al. prepared Pt/
graphene nanocomposites via reduction of graphite oxide
and H2PtCl6 in one pot, and good catalytic performance of
the composites toward methanol oxidation was observed
[19]. Yoo et al. demonstrated that graphene nanosheet (GNS),
synthesized through chemical reduction of exfoliated graphite
oxide, gives rise to an extraordinary modification to the
properties of Pt cluster electrocatalysts supported on it, and the
Pt/GNS electrocatalyst exhibits an unusually high activity for
methanol oxidation reaction compared to Pt/carbon black
catalyst [20]. These imply that graphene nanosheets should be
favorable candidates for the catalyst supports in methanol
oxidation [21].

Up to date, graphene nanosheets have been produced
either by mechanical exfoliation via repeated peeling of
highly ordered pyrolytic graphite (HOPG) or by chemical
oxidation of graphite [22–26]. As recently demonstrated,
considering the facile solution processing, graphene nano-
sheets have been usually prepared by chemical reduction of
graphene oxide in solution [27, 28]. However, the electron-
ic conductive graphene nanosheets, obtained through the
chemical reduction of the non-electronic conductive gra-
phene oxide, have few oxygen-containing groups and could
not readily disperse in aqueous solution [29], which would
be disadvantageous for the assembly and dispersion of Pt or
PtRu nanoparticles. Besides, because of the Van der Waals
interactions, the as-reduced graphene nanosheets tend to
form irreversible agglomerates. In order to obtain water
soluble or dispersible graphene as individual sheets,
attaching some molecules or polymers onto the sheets is a
usable approach to reduce the aggregation [30, 31].

Heteropolyacids (HPAs) are a subset of the polyoxome-
talates, which are very strong Bronsted acids with very high
proton conduction, and also exhibit fast reversible multi-
electron redox behavior under mild conditions [32]. Many
encouraging studies provide evidence that HPAs, in
combination with Pt or PtRu, could act as promoters in
the methanol electro-oxidation process on a fuel cell anode
[33, 34]. Keggin-type heteropolyanions of molybdenum
(H3PMo12O40, PMo12), a typical HPAs, have been attrac-
tive in surface chemical modification of catalyst support
because of their ability to form self-assembled monolayers
on common solid electrode substrates, especially on various
carbon-based material and metal surface with high immo-
bilization strength [35–37]. PMo12 has been preferred as a
soluble molecular species in catalysis and biomedicine. The
self-assembling and negatively charged nature of PMo12

monolayer is desirable for use in carbon-based supports to
improve the dispersion and stability of nanoparticles
supported on such matrix. However, functionalization of
graphene nanosheets through strong chemisorption using
PMo12 has rarely been addressed in the literatures, although
there are some publications in the field of carbon nanotubes
[38].

In this paper, graphene nanosheets were successfully
prepared through chemical reduction of graphite oxide
following the procedure described in Ref. [39, 40] and
functionalized by PMo12. And then, the PMo12-function-
alized graphene nanosheets (PMo12-Graphene) were used
as new catalyst support for high dispersion of PtRu
nanoparticles. The resulting PtRu catalysts (PtRu/PMo12-
Graphene) exhibit improved performance for methanol
electro-oxidation.

Experimental section

Synthesis of PMo12-functionalized Graphene nanosheets

Graphene nanosheets were prepared through chemical
reduction of graphite oxide (GO), which was synthesized
from graphite powder (SP-1 grade 325 mesh, Alfa Inc.) by
a modified Hummers method [39]. In brief, the suspension
of exfoliated GO in pure water was reduced with hydrazine
hydrate at 100 °C with stirring for 24 h, followed by
vacuum filtration and washed with doubly distilled water
and methanol for several times. Then, 100 mg of graphene
nanosheets and 100 mg of PMo12 were dispersed in
200 mL of doubly distilled water with ultrasonic treatment
for 24 h. The suspension was then filtrated and washed with
doubly distilled water for several times, and finally dried at
40 °C in vacuum. The obtained product was denoted as
PMo12-Graphene.

Preparation of PtRu/PMo12-Graphene and PtRu/Graphene
catalysts

Taking H2PtCl6 and RuCl3 as the precursors, the PtRu/
PMo12-Graphene (20 wt.% PtRu on the PMo12-Graphene,
the atomic ratio of Pt to Ru was approximately 1:1)
electrocatalysts were prepared by microwave (MAS-II)
irradiation method in ethylene glycol (EG) solution. In a
typical procedure, 25 mL of EG was loaded into a 50-mL
round-bottom flask, and 20 mg of PMo12-Graphene
prepared above was then added. The mixture was ultrason-
ically treated for 1 h. Then 0.88 mL of 19.3 mM H2PtCl6
6H2O, 0.44 mL of 38.3 mM RuCl3, and a definite volume
of KOH (0.4 M) were added. The suspension was
vigorously stirred for another 1 h, and then irradiated in a
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microwave oven (800 W) at 120 °C for 30 min. The
resulting product was filtered and washed with doubly
distilled water and acetone for several times in turn and
finally dried at 40 °C in vacuum overnight. For comparison,
the PtRu/Graphene electrocatalysts without PMo12 modifi-
cation were prepared by the same process described above.
The metal content of the PtRu/PMo12-Graphene catalyst
and the PtRu/Graphene catalyst, determined by inductively
coupled plasma-atom emission spectroscopy (ICP-AES), is
equal to about 18.59 wt.% (Pt:Ru=1:0.9) and 17.18 wt.%
(Pt:Ru=1:0.75), respectively.

Catalyst characterization

Morphology and microstructure of the graphene nanosheets
and the catalysts were characterized by scanning electron
microscopy (SEM, JSM-6700F), transmission electron
microscopy (TEM, JEM-3010), and X-ray diffraction
(XRD, D/MAX-RA), respectively. Brunauer Emmett Teller
Procedure (BET, ASAP 2020 M+C) was used for surface
area analysis of the graphene nanosheets. Elemental
composition of the PtRu/PMo12-Graphene catalysts was
investigated by energy dispersive X-ray spectroscopy
(EDS, Vantage 4105, NORAN).

Electrochemical measurement

The electrochemical properties of the PtRu/PMo12-
Graphene and PtRu/Graphene catalysts were investigated
in 0.5 M H2SO4+1.0 M CH3OH or 0.5 M H2SO4 aqueous
solutions by typical electrochemical methods at 25 °C,
carried out on a CHI660A electrochemical working station
(Chenhua Instrument Company of Shanghai, China). A
conventional three-electrode cell was employed with
platinum wire as the counter electrode and a saturated
calomel electrode (SCE) as the reference electrode,
respectively. The glassy carbon electrode (GC) loaded
with a definite mass of catalyst with an exposure area of
0.196 cm2 was used as the working electrode. For
preparing the PtRu/PMo12-Graphene/GC electrode, 2 mg
of PtRu/PMo12-Graphene was first ultrasonically treated
for 30 min in 2 mL fresh doubly distilled water, then
30 μL of the solution prepared above was transferred onto
the surface of the GC electrode by a micro-syringe. After
dried in air, the working electrode was coated with 3 μL of
0.5 wt.% Nafion ethanol solution. The preparation of
PtRu/Graphene/GC electrode has a similar procedure.

For CO-stripping voltammetry, pure CO was first
bubbled into the electrolyte for CO adsorption onto the
electrode surface for 20 min. Subsequently, a N2 purge was
applied to remove the CO dissolved in the electrolyte
before the stripping peak was measured.

Results and discussion

Characterization of PMo12-Graphene and PtRu/PMo12-
Graphene catalyst

The micrographs and structure information of graphene
oxide and graphene nanosheets were investigated by SEM,
TEM, and XRD, respectively, and the corresponding results
are show in Fig. 1. Figure 1a exhibits the SEM image of the
graphene oxide sheets, some wrinkles can be obviously
observed. That is because graphite oxide sheets tend to
congregate together to form multilayer agglomerates [41].
From Fig. 1b and c (SEM and TEM images of the graphene
nanosheets, respectively), the individual graphene nano-
sheets extending from the outer surface can be observed
with more wrinkles on the graphene nanosheets, which may
be important for preventing aggregation of graphene and
maintaining high surface area [42]. The surface area of the
graphene measured by the N2 absorption Brunauer–
Emmett–Teller (BET) method is about 450 m2/g, much
larger than that of carbon black XC-72 (180 m2/g). This
might have contributed to graphene nanosheets as promis-
ing catalyst support for fuel cell. To further characterize
graphene oxide and graphene nanosheets, XRD was carried
out and the corresponding results are presented in Fig. 1d.
In Fig. 1d, the graphite (002) diffraction peak at around
25.2° could be observed obviously in the XRD pattern of
the graphene nanosheets, while it could not be seen in the
XRD pattern of the graphene oxide. On the other hand, in
the XRD pattern of the graphene oxide, there is another
diffraction peak at about 9.8°, which is the characteristic
peak of graphene oxide and consistent with those reported
in the literatures [43]. These results demonstrate that
graphene nanosheets are successfully prepared through the
chemical reduction of graphene oxide.

Figure 2 shows the images about the dispersion (1 mg
mL−1) of graphene nanosheets and PMo12-functionalized
graphene nanosheets (PMo12-Graphene) in aqueous solu-
tion, respectively. The suspension of PMo12-Graphene in
pure water placed for overnight after ultrasonic treatment
was still a homogeneous black dispersion (Fig. 2b). In
comparison, the dispersion of graphene nanosheets without
PMo12 modification produced black precipitation at the
bottom of the bottle (Fig. 2a). This demonstrates that
PMo12 improves obviously the dispersion of graphene
nanosheets in water, which is helpful for PtRu nanoparticles
to adhere to the graphene nanosheets.

Figure 3 shows TEM images of the PtRu/Graphene
(Fig. 3a) and PtRu/PMo12-Graphene catalysts (Fig. 3b).
From Fig. 3a and b, it is confirmed that the graphene
nanosheets are decorated successfully with dense PtRu
nanoparticles. Noteworthy is that no nanoparticle aggrega-
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tion is observed on the PMo12-functionalized graphene
nanosheets and PtRu nanoparticles with a mean diameter of
ca. 2.0 nm disperse uniformly on the graphene nanosheet
surface (Fig. 3b). However, for the graphene nanosheets
without PMo12 modification, the aggregation and larger

particle size of PtRu nanoparticles with a mean diameter of
ca. 2.5 nm on the surface of graphene nanosheets can be
observed (Fig. 3a). This should be attributed to the
existence of electrostatic repulsive and coordination inter-
actions between the negatively charged PMo12 film on the
surface of the graphene nanosheets and the metal particles.
EDS analysis was conducted to verify the presence of
PMo12 in the PMo12-Graphene (Fig. 3c).

Electrocatalytic activity for methanol oxidation

The catalytic properties of the as-prepared catalysts towards
the methanol oxidation reaction were evaluated in 0.5 M
H2SO4+1.0 M CH3OH aqueous solution by cyclic voltam-
metry (CV) at a scan rate of 50 mV s−1, and the
corresponding results are shown in Fig. 4. From Fig. 4a,
two oxidation peaks, which are related to the oxidation of
methanol and the corresponding intermediates produced
during the methanol oxidation, can be observed obviously
at 0.65 and 0.43 V, respectively. The characteristics of CV
curves are in agreement with other works [44]. It is noted
that, comparing with the PtRu/Graphene catalyst, the
significant enhancement of the peak current of methanol
oxidation can be observed on the PtRu/PMo12-Graphene
catalyst. The forward peak current density of methanol
oxidation on the PtRu/PMo12-Graphene catalyst is

Fig. 2 Images about the dispersion (1 mg mL−1) of graphene
nanosheets (a) and PMo12-functionalized graphene nanosheets (b) in
aqueous solution

Fig. 1 SEM images of gra-
phene oxide (a) and graphene
nanosheets (b); TEM image of
graphene nanosheets (c) and
XRD patterns of graphene
nanosheets and graphene
oxide (d)
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2,028 mA cm−2 mg−1, being 1.5 times higher than that on
the PtRu/Graphene catalyst (1,346 mA cm−2 mg−1), and
better than the results reported in the literature [17]. These
show that the electrocatalytic activity of the PtRu/PMo12-
Graphene catalyst for methanol oxidation, in terms of mass
specific current densities, is better than that of the PtRu/
Graphene catalyst and the electrocatalytic activity of the
PtRu/Graphene catalyst is enhanced obviously by PMo12
modification of graphene nanosheets. In addition, the
background current of the PtRu/PMo12-Graphene catalyst
at intermediate potential associated with the double layer
capacitance of the electrode is much higher than that of
PtRu/Graphene, due to the presence of PMo12 [45, 46].

To clarify the mechanism about how PMo12 improves
the electrocatalytic activity of the PtRu/Graphene catalyst,
cyclic voltammogram of PMo12-Graphene catalyst for
methanol oxidation in 0.5 M H2SO4+1.0 M CH3OH
aqueous solution is also shown in Fig. 4b. As seen in
Fig. 4b, there is no obvious methanol oxidation peak for
Graphen-PMo12. However, three pair of peaks of PMo12,
similar with the peaks of the PtRu/PMo12-Graphene
catalysts at the same potential window during methanol

Fig. 4 Cyclic voltammograms of the PtRu/PMo12-Graphene/GC and
PtRu/Graphene/GC electrode (a) and the PMo12-Graphene/GC elec-
trode (b) at 50 mV s−1 in 0.5 M H2SO4+1.0 M CH3OH aqueous
solution

Fig. 3 TEM images of PtRu/Graphene catalysts (a) and PtRu/PMo12-
Graphene catalysts (b); EDS pattern of the PMo12-functionalized
graphene nanosheets (c)
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oxidation, can be clearly observed at about 0.0, 0.2, and
0.35 V, respectively. These peaks could be attributed to
consecutive, approximately two electron redox reactions
[47]. The result indicates that the pure PMo12 adsorbed
stably on graphene nanosheets has no catalytic activity for
methanol oxidation, but contributes to the methanol
oxidation combining with PtRu nanoparticles. This can be
further confirmed from the results of chronoamperometry
(CA) shown in Fig. 5. It is observed that during the whole
time, the current density of methanol oxidation at the PtRu/
PMo12-Graphene/GC electrode is higher than that at the
PtRu/Graphene/GC electrode, which is consistent with the
results from CV (Fig. 4a).

To further investigate the role of PMo12, the specific
electrochemically active surface areas (EAS) of PtRu/
PMo12-Graphene and PtRu/Graphene were estimated from
the charge associated to the COads stripping peak (deter-
mined in 0.5 mol L−1 H2SO4 solution at a scan rate of
50 mV s−1 and corrected for the effects of double layer
charging currents and oxide growth), and assuming that one
monolayer of adsorbed CO linearly bonded requires
0.42 mC cm−2 for its oxidation [48]. Figure 6 corresponds
to the CO-stripping curves (initiated in the anodic direction)
during the first two cycles after the PtRu/PMo12-Graphene
(Fig. 6a) and PtRu/Graphene (Fig. 6b) catalysts were pre-
absorbed with CO for 20 min. As the scanning progressed,
anodic peaks (real line) corresponding to the oxidation of
COads could be observed from Fig. 6. In the following
cycle, the curves are almost overlapped with the stable
cycles before pre-adsorption (dashed lines), which indicates
that the pre-adsorbed CO on the catalyst surface was
completely unabsorbed during the first cycle. From Fig. 6,
the calculated EAS values for PtRu/PMo12-Graphene and

Fig. 6 Cyclic voltammograms of the PtRu/PMo12-Graphene/GC (a)
and PtRu/Graphene/GC (b) electrodes at 50 mV s−1 in 0.5 M H2SO4

aqueous solution. Dashed lines represent the stable cycles before CO
pre-adsorption and the solid lines represent the first cycle of pre-
adsorbed CO oxidation

Fig. 5 Chronoamperograms of the PtRu/PMo12-Graphene/GC and
PtRu/Graphene/GC electrodes at 0.5 V in 0.5 M H2SO4+1.0 M
CH3OH aqueous solution

Fig. 7 Long-term cycle stabilities of the PtRu/PMo12-Graphene/GC
and PtRu/Graphene/GC electrodes in 0.5 M H2SO4+1.0 M CH3OH
aqueous solution at 50 mV s−1
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for PtRu/Graphene are 48.05 and 15.90 m2 g−1 of Pt,
respectively. It is obvious that the EAS value of the PtRu/
PMo12-Graphene catalyst is much higher than that of the
PtRu/Graphene.

From a more basic chemical point of view, the specific
surface activities of the catalysts, in terms of specific
current density normalized to the EAS, were also evaluated,
and the calculated specific surface activities for PtRu/
PMo12-Graphene and for PtRu/Graphene are 13.0 and
21.7 A m−2, respectively. It is noted that the specific
surface activity of PtRu/PMo12-Graphene is slightly lower
than that of PtRu/Graphene. The reason is not yet clear,
however, the specific current activity of PtRu/Graphene in
terms of mass specific currents is improved by PMo12,
which is important from a practical point of view.

Based on the results from TEM images (Fig. 3), cyclic
voltammograms (Fig. 4) and the above EAS values, the
main reasons for the high electrocatalytic activity of the
PtRu/PMo12-Graphene catalyst in terms of mass specific
currents may be the small particle size, uniform distribu-
tion, and high electrochemically active surface area of the
PtRu catalyst supported on the PMo12-functionalized
graphene nanosheets. Besides, PMo12 adsorbed on gra-
phene nanosheets may interact with absorbed hydrogen
atoms to form mixed hydrogen/Mo adsorption layers [38],
and provide an ideal interface structure on the redox sites
with high protonic conductivity [49], thus improving the
properties of the PtRu electrocatalyst.

Long-term cycling stability

The long-term cycling stabilities of the PtRu/PMo12-
Graphene and PtRu/Graphene catalysts were also investi-
gated in 0.5 M H2SO4+1.0 M CH3OH aqueous solution by
cycle voltammetry and the corresponding results are shown
in Fig. 7. From Fig. 7, the value of ip/ip(1) (the ratio between
the current densities of the forward oxidation peak at the
corresponding cycles and the first cycle) decreases gradu-
ally with the continuous scans. This may be due to the
accumulation of the intermediates on the catalyst surface,
which results in poisoning of the Pt surface and diminution
of its activity for methanol oxidation. Also, maybe a change
of the surface structure of the PtRu nanoparticles [50] and
methanol consumption during the successive scans explains
the loss of the current density. When the potential was
cycled continuously for 200 cycles, 10.1% loss of the
current density at the PtRu/PMo12-Graphene/GC electrode
can be observed. However, for the PtRu/Graphene/GC
electrode, a larger decrease (18.0%) is observed. The results
above imply that the PtRu/PMo12-Graphene catalyst has
better long-term cycle stability for methanol oxidation than
the PtRu/Graphene catalyst, and the existence of PMo12 can
enhance the long-term cycle stability of the catalyst.

Conclusions

Well-dispersed PtRu metal nanoparticles were successfully
loaded on the PMo12-functionalized graphene nanosheets
with microwave heating. The results from TEM, cyclic
voltammetries, and the electrochemical surface area indi-
cated that PMo12-Graphene is a good support for PtRu, and
the resulting PtRu/PMo12-Graphene catalyst has higher
activity, and better cycle stability for methanol electro-
oxidation comparing with that of the PtRu/Graphene
catalyst.
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